0.1 CLASSIFICATION CHANGED # MEMORANDUM LOW-PRESSURE PERFORMANCE OF A TUBULAR COMBUSTOR WITH GASEOUS HYDROGEN By Edmund R. Jonash, Arthur L. Smith, and Vincent F. Hlavin Lewis Flight Propulsion Laboratory Cleveland, Ohio CLASSIFICATION CHANGED NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS > WASHINGTON May 9, 1955 # NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS # RESEARCH MEMORANDUM # LOW-PRESSURE PERFORMANCE OF A TUBULAR COMBUSTOR # WITH GASEOUS HYDROGEN By Edmund R. Jonash, Arthur L. Smith, and Vincent F. Hlavin #### SUMMARY An investigation was conducted to determine the combustion performance characteristics of gaseous hydrogen fuel in a single tubular turbojet combustor. The combustor was operated over a range of inlet-air pressures from 3.3 to 14.3 inches of mercury absolute. Reference velocities as high as 174 feet per second were investigated to pressures as low as 8.0 inches of mercury absolute; reference velocities at lower pressures were limited to lower values by the test facility. Limited comparison tests were conducted with gaseous propane fuel, Hydrogen fuel burned over very broad ranges of temperature rise at all pressure conditions investigated. No combustion instability or flame blow-out was observed. Combustion efficiencies in excess of 90 percent were maintained to pressures as low as 8.0 inches of mercury absolute with velocities as high as 174 feet per second. At pressures below 8.0 inches of mercury absolute, marked decreases in efficiency were observed. Propane operated over only a very limited range of temperature rise; combustion efficiencies were lower than those obtained with hydrogen and were adversely affected by increases in reference velocity and decreases in inlet-air pressure. The superior performance of the hydrogen is attributed to its higher flame speed and wider flammability range. The fact that 100-percent combustion efficiency was not obtained over a broad range of operating conditions is attributed to inadequate mixing of the fuel and air in the primary zone of the combustor used for the tests. ### INTRODUCTION A research program is being conducted at the NACA Lewis laboratory to improve combustion efficiency and combustion stability limits of turbojet combustors. The use of a special fuel to provide improved performance at very low operating pressures is described in this report. The limits and efficiency of combustion in the turbojet are seriously reduced at low operating pressures encountered in low-speed, high-altitude flight. Current combustors in engines with pressure ratios of 5 can be operated at subsonic flight conditions to altitudes of about 45,000 feet while maintaining efficiencies over 90 percent (ref. 1). Experimental combustors have been developed (ref. 2) that maintain this same level of performance to altitudes of 70,000 feet. The pressures encountered in subsonic flight at 70,000 feet are of the order of 4 to 5 pounds per square inch absolute for a compressor pressure ratio of 5. Some applications for combustors may require operation at pressures well below this range. For example, a very high-altitude (100,000 ft) low-speed aircraft might require combustion at pressures as low as 1 to 3 pounds per square inch absolute; very low pressures would also be encountered in a combustor supplied with air from a ducted fan, or in an afterburner. A promising alternative to further design improvements for attaining the required performance is the use of a special, highly reactive fuel. Depending upon airframe requirements, logistics, and other factors, this special fuel may constitute (1) the main fuel supply to the engine, (2) a pilot fuel to aid combustion of the main fuel, or (3) an alternate fuel supply for use only during operation at the very severe conditions. To evaluate the performance characteristics of one possible "special fuel," low-pressure combustion tests were conducted with a tubular turbo-jet combustor supplied with gaseous hydrogen fuel. The tests were conducted at pressures from about 3 to 14 inches of mercury absolute, and reference air velocities from 70 to 170 feet per second. The results are analyzed to indicate the low-pressure combustion performance characteristics obtained with hydrogen, and the effect of fuel-injector size and design on the performance of this fuel. The data are compared with limited data obtained with a gaseous hydrocarbon fuel, propane, at some of the conditions investigated. # APPARATUS # Combustor Installation and Instrumentation The installation of the single J33 combustor is shown schematically in figure 1. Air having a dewpoint of either -20° or -70° F was supplied to the combustor from the laboratory supply system; the hot exhaust gases from the combustor were cooled and fed to the laboratory exhaust system. The air flow to the combustor was measured with a square-edged orifice plate installed according to A.S.M.E. specifications and located upstream of the flow-regulating valves. The combustor-inlet air temperature was regulated by means of electric heaters. 614 . . . = A diagrammatic cross section of the combustor installation showing the position of instrumentation planes and the location of temperature-and pressure-measuring instruments in these planes is presented in figure 2. Thermocouples and total-pressure tubes were located at centers of equal areas. Construction details of the instrumentation probes are shown in figure 3. The combustor-inlet and -outlet temperatures were indicated on automatic balancing potentiometers. The inlet and outlet total-pressure data were obtained with manometers connected to 12 manifolded probes at stations A-A and D-D (fig. 2). # Fuel Supply System A schematic diagram of the system used to supply gaseous fuel to the single combustor is presented in figure 4. Hydrogen was stored in 38 cylinders, manifolded together, at a pressure of 2600 pounds per square inch. Each cylinder contained about 2780 cubic feet (at standard atmospheric conditions) of hydrogen. The hydrogen was drawn from one or more of the cylinders through a reducing valve, filter, rotameter, throttle valve, check valve, and into the combustor. A relief valve and a pressure switch, vented to the atmosphere, were installed to protect the system against excessive pressures. Analysis indicated the hydrogen to be at least 99 mole percent pure. Gaseous propane fuel was supplied from approximately 800-cubic-foot cylinders (at standard atmospheric conditions) at 120 pounds per square inch through the same system that was used for the hydrogen. The purity of the propane was estimated by the supplier to be at least 96 mole percent. Fuel-flow rates to the combustor were measured by rotameters. The rotameters were calibrated with air at temperature and pressure conditions that provided fluid densities approximately the same as those of the test fuels at the test conditions. Appropriate density corrections were then applied to the rotameter measurements. # Fuel Injectors A number of fuel injectors were used in this investigation to obtain a variation in injection characteristics. Construction details of these injectors are shown in figure 5. Injectors A, B, and C were commercial hollow-cone swirl-type nozzles modified by removing the swirl parts and adding six equally spaced holes positioned 45° from the axis of the nozzle. Injector D was a similar commercial nozzle modified by removing the swirl parts, enlarging the central orifice, and facing the tip of the injector to form a sharp-edged orifice. Injector E was similar to the modified "axial tube" injector used for gaseous fuel injection in the investigation reported in reference 3. Injector E was designed to introduce the fuel at a more gradual rate to avoid over-rich fuel-air mixtures in the upstream primary-combustion zone. The orifices in injector E were arranged to provide an axial distribution of fuel-orifice area approximately the same as the axial distribution of air-entry area contained in the perforations in the walls of the combustor liner. The flow-rate - pressure-drop characteristics of these fuel injectors are presented in figure 6. Injectors B, D, and E have similar pressure-drop characteristics. #### PROCEDURE The combustion performance of gaseous hydrogen fuel was determined at the following combustor operating conditions: | Inlet-air
total | Air-
flow | Reference velocity, a ft/sec | | | | |-------------------------|----------------------|------------------------------|-------------------|--|--| | pressure,
in. Hg abs | rate,
lb/sec | Inlet-air to | | | | | | : | 40 | 200 | | | | 14.3 | 0.80
1.00
1.30 | 80
100
131 | 105
132
173 | | | | 8.0 | 0.56
.73 | 100
132 | 133
174 | | | | 6.2 | 0.50 | 11.5 | 153 | | | | 3.3 | 0.15 | 65 | 83 | | | ^aBased on combustor maximum cross-sectional area of 0.267 sq ft. The reference velocities are average values; some variation in air-flow rate was tolerated at the lower pressure conditions because of limitations in the flow control system used. For the air velocities and combustor temperature-rise conditions of interest, a pressure of 3.3 inches of mercury absolute was the minimum pressure that could be maintained in the facility. At each of these combustor-inlet conditions, hydrogen performance data were recorded over a wide range of fuel-air ratios; this range was limited by (1) fuel-flow metering equipment, (2) fuel supply, or (3) excessive combustor-outlet temperatures. Several minutes were allowed for combustion to stabilize at each condition before the performance data were recorded. The spark plug used for ignition was de-energized during operation. For comparison purposes, combustion tests were conducted with gaseous propane fuel at the following inlet-air conditions: | Inlet-air
total | Air-
flow | Reference velocity,
ft/sec | | | | |-------------------------|----------------------|-------------------------------|-------------------|--|--| | pressure,
in. Hg abs |
rate,
lb/sec | Inlet-air | temperature, oF | | | | | | 40 | 200 | | | | 14.3 | 0.80
1.00
1.30 | 80

 | 105
132
173 | | | | 8.0 | 0.56
.75 | | 133
178 | | | #### CALCULATIONS Combustion efficiency was calculated as Actual enthalpy rise across combustor per 1b of air (Fuel-air ratio) (Heating value of fuel) For test data obtained with hydrogen, the enthalpies at the combustor inlet and outlet were determined from the charts presented in figure 7. These charts were constructed from data of reference 4, assuming the following reaction to occur: $$H_2 + \frac{O_2 + 3.78N_2}{2} + \text{excess air} \rightarrow H_2O + 1.89N_2 + \text{excess air}$$ The enthalpy of the inlet hydrogen-air mixture was based on the air temperature at station B-B (fig. 2); the enthalpy of the exhaust gases, on the arithmetical average indication of the 16 chromel-alumel thermocouples at station C-C (fig. 2). The enthalpy of the exhaust gas was not corrected for variations in composition due to inefficient combustion; that is, only water, nitrogen, and oxygen were assumed to be present in the exhaust gases. A heating value for pure hydrogen of 51,571 Btu per pound (literature value) was used. Combustion efficiencies obtained with propane were calculated by the method described in reference 5, using the same inlet and outlet temperature measuring stations. A heating value for the propane fuel of 19,930 Btu per pound (literature value) was used. The small amount of impurities present in this fuel would not affect its heating value, since the impurities have heating values close to that of propane. #### RESULTS The combustion performance data obtained with hydrogen fuel in the single J33 combustor are presented in table I. The combustion efficiencies are plotted as a function of temperature rise in figure 8. check data shown in this figure (tailed symbols) indicate a maximum deviation of almost 10 percent in combustion efficiency, the larger deviations occurring at the lower operating pressures. This indicated reproducibility of data is poorer than that normally expected in turbojet combustion tests. The factors that are believed to have contributed to the poor reproducibility include: (1) rotameters have been observed frequently to given inconsistent gaseous fluid flow measurements, (2) limited hydrogen supply required more rapid recording of the data, with less time being allowed for combustion to reach equilibrium conditions, and (3) small variations in inlet pressures and temperatures occurred during data recording operations. Fuel-flow measurements were subject to particularly large errors at the very low flow rates required for low-pressure, lowtemperature-rise operation. Two rotameters were used to obtain the data in different ranges of fuel-flow rate, and these rotameters did not, in all cases, provide equivalent results. Inlet-air conditions were particularly subject to variations at the very low pressure, where the maximum capacity of the exhaust system was being utilized. The performance data presented in figure 8 show that, in practically all cases, combustion efficiency decreased with an increase in temperature rise. Combustion efficiencies near 100 percent were attained at the highest pressure condition, 14.3 inches of mercury absolute (figs. 8(a) to (f)). Large decreases in efficiency occurred only when the inlet pressure was reduced below 6.2 inches of mercury absolute. Considering the reproducibility of the data, the variations in nozzle design investigated had very little effect on combustion efficiency. In a number of cases single curves are used to represent the data obtained with two different nozzles. The most significant effects of fuel-injection characteristics were observed at very low temperature-rise conditions. The data obtained with propane fuel are presented in table II; the variation in combustion efficiency with temperature rise, for each of the operating conditions investigated, is shown in figure 9. Combustion efficiency generally decreased both at low and at high values of temperature rise. Maximum values of temperature rise and flame blow-out were observed at most of the operating conditions investigated. Efficiencies near 100 percent were attained only at high-pressure, low-velocity conditions; they decreased rapidly with a decrease in pressure and with an increase in reference velocity. 3614 - -- ___ . = = --- . Included in figure 9 for comparison are faired curves representing the performance of hydrogen under similar operating conditions. #### DISCUSSION # Stability Limits The data that have been presented show that gaseous hydrogen will burn in an essentially unmodified turbojet combustor to pressures as low as 3.3 inches of mercury with velocities at that pressure of the order of 65 to 80 feet per second. Limitations in the test facility prevented operation of the combustor at more severe conditions. From the observed stability of combustion, however, it is considered probable that satisfactory operation could have been maintained at even more severe conditions. At higher pressures, where larger flow capacities were available, combustion was maintained to velocities of 153 feet per second at 6.2 inches of mercury absolute, and 174 feet per second at 8.0 inches of mercury absolute. Combustion could also be maintained over a very broad range of fuel-air ratio (or temperature rise). Fuel-air ratios as low as 0.0002 were investigated, with no flame blow-out being observed. The highest fuel-air ratios investigated were always limited by facilities or by instrumentation and never by flame blow-out. The poor stability characteristics observed with gaseous propane at high fuel-air ratios (fig. 9) are to be expected, since this combustor was designed for a liquid fuel requiring a finite length of the combustor for complete evaporation. The substitution of a gaseous fuel greatly increased local fuel-air ratios in the upstream end of the combustor, where a relatively small amount of air is introduced, causing overenrichment and flame blow-out. The broader stability limits obtained with hydrogen (fig. 9) may be attributed, at least in part, to its wider flammability range. The lean-to-rich flammability range for propane is 2.1 to 9.4 percent by volume; corresponding values for hydrogen are 4.0 to 74.2 percent (ref. 6, pp. 749, 751). # Combustion Efficiency Combustion efficiencies of 90 percent and higher were obtained with hydrogen fuel at pressures as low as 8.0 inches of mercury absolute. The highest efficiencies were observed at low values of temperature rise. This trend indicates that the primary combustion zone was operating overrich. More optimum conditions for combustion were obtained at low overall fuel-air ratios. Combustion efficiencies of less than 100 percent were obtained at practically all conditions of operation. Losses in efficiency in 3614 turbojet combustors have been attributed to (1) insufficient residence time for evaporation, mixing, and combustion of the fuel and air, (2) quenching effects of the relatively cool combustor walls, and (3) impingement of liquid fuel on the walls (ref. 7). Hydrogen fuel has an extremely high flame speed (about 6 times that of propane, ref. 6, pp. 460, 468) and requires no vaporization. Also, of course, liquid fuel impingement on the valls has been eliminated. Losses in efficiencies are, therefore, most probably attributable to effects of wall quenching and insufficient mixing of the fuel and the air. Previous research (ref. 8) has indicated a relation between combustion efficiency and combustor size, as expressed by the hydraulic radius of the combustor liner at the plane where the undisturbed fuel spray would impinge upon the wall. This relation was attributed to some of the factors noted previously fuel impingement, wall quenching, and fuel-air mixing patterns. For the combustor and the operating conditions used in the present tests, efficiencies of less than 100 percent would be predicted. From the preceding discussion, it would be expected that variations in injector design might affect combustion efficiency by affecting the rate of mixing of the fuel and air. Observed effects of variations in injector design on performance of hydrogen were relatively minor, and occurred principally at very low values of temperature rise. It must be concluded that the injectors investigated did not greatly alter mixing characteristics. Major changes in the air-introduction system might produce more pronounced effects on performance. Relatively small variations in injector design produced very significant effects on the combustion efficiency of propane (fig. 9). The nozzle having the smaller orifices and hence the higher pressure differential gave higher efficiencies. In this case the variations in mixing characteristics were sufficient to cause marked changes in combustion performance of this less reactive fuel. Considerably higher efficiencies were obtained with hydrogen than with propane (fig. 9). This result would be expected from previous research (ref. 5) indicating that higher combustion efficiencies may be obtained with fuels having higher flame speeds. Figure 9 also shows that the performance of hydrogen was much less affected by large increases in reference velocity than was that of propane. This is of importance when considering future development engines utilizing higher flow per unit area. The effects of inlet-air pressure p_i , temperature T_i , and reference velocity V_r , expressed by the correlating parameter V_r/p_iT_i (ref. 2) on the combustion efficiencies of hydrogen and propane are shown in figure 10. Data are shown for values of combustor temperature rise of 680° F (fig. 10(a)) and 1180° F (fig. 10(b)), which correspond to cruise and rated-speed requirements, respectively, of a representative turbojet engine (ref. 9). Hydrogen data obtained with injector B, the only one tested at all operating conditions, and propane
data obtained with injector A, which produced the highest efficiencies, are shown in this comparison. With hydrogen, marked decreases in efficiency occur only at very high values of V_r/p_iT_i . The combustion efficiency of propane was adversely affected by increases in V_r/p_iT_i even at low values of the correlating parameter. Also, combustion of propane was not possible at the higher value of temperature rise because of flame blow-out (fig. 9). Curves representing combustion efficiencies obtained in the same tubular combustor with liquid MIL-F-5624A, grade JP-4 fuel (ref. 7) and in an experimental annular turbojet combustor with gaseous propane fuel (ref. 9) are included in figure 10. The liquid-fuel curve represents the performance of the tubular combustor as it is currently being used in service. Very large improvements in efficiency at severe operating conditions would be obtained through the use of gaseous hydrogen fuel in this combustor. The experimental combustor curve shown in figure 10 is representative of the best performance that has been obtained in experimental combustors investigated at the NACA Lewis laboratory. At low values of $V_{\rm r}/p_{\rm i}T_{\rm i}$ the experimental combustor produced near 100-percent combustion efficiency; however, the limited data indicate that the efficiency decreased more rapidly with an increase in $V_{\rm r}/p_{\rm i}T_{\rm i}$ than did that of hydrogen. It is expected that a combination of a high-performance experimental combustor and a highly reactive fuel such as hydrogen would assure near 100-percent combustion efficiencies over a very broad range of operating conditions. # SUMMARY OF RESULTS The following results were obtained from an investigation of the performance of gaseous hydrogen fuel in a single tubular combustor operated at low inlet-air conditions: - 1. Hydrogen fuel burned over very broad ranges of combustor temperature rise (or fuel-air ratio) at pressures as low as 3.3 inches of mercury absolute. No combustion instability or flame blow-out was observed within the ranges of fuel and air flow that were investigated. - 2. At inlet-air pressures of 8.0 inches of mercury and above, combustion efficiencies in excess of 90 percent were maintained. At these pressures the effects of large increases in reference air velocity on combustion efficiency were relatively minor. At pressures below 8.0 inches of mercury absolute, marked decreases in combustion efficiency were observed. - 3. The combustion performance of hydrogen was not significantly affected by variations in the design of the fuel injector. - 4. In comparison, a gaseous hydrocarbon fuel, propane, burned over only very limited ranges of temperature rise. Combustion efficiencies were lower and were very adversely affected by increases in reference velocity and decreases in inlet-air pressure to 8.0 inches of mercury absolute. - 5. The superior performance of hydrogen fuel is attributed to its higher flame speed and its wider flammability range. The fact that 100-percent combustion efficiency was not obtained over a broad range of operating conditions is attributed to limited mixing of the fuel and air in the primary zone of the combustor used for these tests. Lewis Flight Propulsion Laboratory National Advisory Committee for Aeronautics Cleveland, Ohio, December 23, 1954 # REFERENCES - 1. McCafferty, Richard J.: Performance Comparisons of Navy Jet Mix and MIL-F-5624A (JP-3) Fuels in Tubular and Annular Combustors. NACA RM E51J17, 1954. - 2. Norgren, Carl T.: Performance of a Vaporizing Annular Turbojet Combustor at Simulated High Altitudes. NACA RM E54G21, 1954. - 3. McCafferty, Richard J.: Vapor-Fuel-Distribution Effects on Combustion Performance of a Single Tubular Combustor. NACA RM E50J03, 1950. - 4. Huff, Vearl N., Gordon, Sanford, and Morrell, Virginia E.: General Method and Thermodynamic Tables for Computation of Equilibrium Composition and Temperature of Chemical Reactions. NACA Rep. 1037, 1951. (Supersedes NACA TN's 2113 and 2161.) - 5. Wear, Jerrold D., and Dittrich, Ralph T.: Performance of Pure Fuels in a Single J33 Combustor. I Five Liquid Hydrocarbon Fuels. NACA RM E52J03. 1952. - 6. Lewis, Bernard, and von Elbe, Guenther: Combustion, Flames and Explosions of Gases. Academic Press, Inc., 1951. - 7. Butze, Helmut F., and Jonash, Edmund R.: Turbojet Combustor Efficiency with Ceramic-Coated Liners and with Mechanical Control of Fuel Wash on Walls. NACA RM E52I25, 1952. NACA RM E54L3Oa 11 8. Norgren, Carl T., and Childs, J. Howard: Effect of Liner Air-Entry Holes, Fuel State, and Combustor Size on Performance of an Annular Turbojet Combustor at Low Pressures and High Air-Flow Rates. NACA RM E52J09, 1953. 9. Norgren, Carl T., and Childs, J. Howard: Performance of an Annular Turbojet Combustor Having Reduced Pressure Losses and Using Propane Fuel. NACA RM E53G24, 1953. TABLE I. - HYDROGEN PERFORMANCE DATA (a) Injector A | Run | Combustor-
inlet
total
pressure,
in. Hg abs | Combustor-
inlet
tempera-
ture,
op | Air-flow
rate,
lb/sec | Refer-
ence
veloc-
ity,
ft/sec | Fuel-
flow
rate,
lb/hr | Fuel-air
ratio | Mean
combustor-
cutlet
temper-
ature,
Op | Mean tem-
perature
rise
through
combustor,
or | Combustion
efficiency,
percent | Fuel
injector
pressure
drop,
lb/sq in.
gage | |--|---|--|---|---|--|---|---|--|--|--| | 1
2
3
4
5
6
7 | 8.0 | 40
41
40
39
38
44
41 | 0.564
.564
.563
.561
.564
.560 | 100.7
100.9
100.5
100.0
100.3
100.8 | 9.60
13.49
16.38
20.79
21.83
1.43
7.02 | 0.00473
.00665
.00808
.01029
.01075
.00071 | 875
1122
1322
1535
1705
193
700 | 835
1081
1282
1496
1667
149
659 | 88.0
83.4
83.3
79.0
85.4
96.7
91.8 | 26.4
57.4
45.4
59.4
62.4
1.0 | | 8
9
10
11
12
13 | | 40
41
40
52
48
47 | .562
.562
.562
.562
.560
.564 | 100.2
100.4
100.2
102.7
101.6
102.1 | 1.84
3.98
11.62
1.80
5.73
13.91 | .00091
.00197
.00574
.00089
.00284
.00685 | 223
424
1090
222
593
1210 | 183
383
1050
170
545
1163 | 93.2
92.4
93.1
88.7
92.0
87.8 | 1.5
7.9
31.4
2.0
12.4
37.4 | | 14
15
16
17
18
19 | | 207
199
191
203
198
202 | .562
.560
.560
.561
.562
.562 | 134.5
132.3
130.7
133.3
132.5
133.3 | 9.85
14.41
18.74
21.12
1.15
7.95 | .00487
.00715
.00330
.01046
.00057
.00393 | 1025
1313
1542
1624
311
876 | 818
1114
1351
1421
113
674 | 84.7
81.3
78.4
74.4
95.2
84.8 | 26.4
41.4
54.4
61.4
.5
20.4 | | 20
21
22
23
24
25 | | 196
201
204
199
199
206 | .568
.557
.571
.565
.563 | 133.5
131.9
135.8
135.3
132.8
134.0 | 17.48
8.58
12.76
13.90
8.72
2.20 | .00854
.00428
.00620
.00683
.00430
.00109 | 1505
960
1300
1358
978
415 | 1309
759
1096
1159
779
209 | 81.9
88.6
91.6
88.7
90.4
90.7 | 48.4
22.4
36.4
59.4
22.4
3.2 | | 26
27
28
29 | | 40
39
45
36 | .735
.735
.732
.738 | 132.2
131.9
135.1
131.8 | 10.65
13.91
18.17
20.65 | .00402
.00526
.00690
.00785 | 825
1000
1234
1375 | 785
961
1189
1339 | 96.3
92.1
89.3
89.7 | 28.4
38.4
51.4
59.4 | | 30
31 | | 202
193 | .735
.738 | 176.0
174.3 | 4.80
9.41 | .00181 | 540
825 | 338
632 | 89.1
87.8 | 10.4
25.4 | | 32 | 8.1 | 202 | 0.727 | 171.8 | 15.20 | 0.00581 | 1180 | 978 | 85.9 | 42.3 | | 33
34 | 8.0 | 218
178 | 0.730
.729 | 179.2
168.3 | 10.90
14.81 | 0.00415
.00564 | 925
1110 | 707
932 | 84.5
84.0 | 30.4
42.4 | | 35 | 8.4 | 199 | 0.729 | 165.4 | 20.41 | 0.00778 | 1390 | 1191 | 80.8 | 59.2 | | 36
37 | 8.0 | 197
199 | 0.733
.732 | 174.4
174.7 | 2,16
13.52 | 0.00082
.00513 | 355
1085 | 158
886 | 90.6
87.6 | 2.5
37.4 | | 38
39
40
41
42
43
44 | 6.2 | 35
35
42
40
41
40
38 | 0.491
.491
.495
.500
.501
.500 | 112.3
112.3
114.9
115.6
116.0
115.6
116.2 | 3.07
8.80
3.30
9.25
1.78
6.65
17.40 | 0.00174
.00498
.00185
.00514
.00099
.00369
.00957 | 358
922
394
962
225
722
1532 | 323
887
352
922
184
682
1494 | 87.5
89.0
90.7
90.0
86.8
90.5
84.4 | 5.8
23.9
6.8
25.3
2.4
17.5
46.5 | | 45
46
47
48
49
50
51 | 3.3 | 52
51
50
50
61
60 | 0.151
.151
.152
.152
.154
.156 | 66.48
66.35
66.66
66.68
68.99
69.75
70.65 | 1.50
2.68
5.51
8.02
2.13
5.17
7.20 | 0.00276
.00493
.01007
.01466
.00385
.00919
.01266 | 525
823
1425
1870
711
1385
1741 | 475
772
1175
1820
650
1325
1681 | 82.2
77.9
73.4
71.4
82.6
76.9
74.6 | 2.8
6.3
14.7
22.7
4.3
13.7
19.7 | | 52
53
54
55
56
57
58 | |
200
202
209
204
205
199
200 | .150
.150
.150
.154
.154
.154 | 85.13
85.39
86.29
87.93
87.80
87.27
86.26 | 1.48
3.34
5.50
6.98
1.45
3.51
6.62 | .00274
.00619
.01019
.01260
.00262
.00633
.01210 | 616
1070
1523
1805
599
1100 | 416
868
1314
1601
396
1001
1530 | 72.5
71.5
70.1
71.5
72.5
72.8
71.5 | 3.3
10.5
14.7
19.7
3.3
9.2
18.7 | ŧ • TABLE I. - Continued. HYDROGEN PERFORMANÇE DATA (b) Injector B | Run | Combustor-
inlet
total
pressure,
in. Hg abs | Combustor-
inlet
tempera-
ture, | Air-flow
rate,
lb/sec | Refer-
ence
veloc-
ity,
ft/sec | | Fuel-air
ratio | Mean
combustor-
outlet
temper-
ature,
or | Mean tem-
perature
rise
through
combustor,
Op | Combustion
efficiency,
percent | Fuel
injector
pressure
drop,
lb/sq in.
gage | |--|---|--|--|---|---|--|---|--|---|--| | 59
60
61
62
63 | 14.3 | 46
39
40
46
46 | 0.794
.800
.799
.801
.798 | 79.9
79.4
79.4
80.6
80.3 | 9.54
14.79
18.89
28.45
38.09 | 0.00334
.00514
.00657
.00986
.01326 | 716
1003
1210
1630
2005 | 670
964
1170
1584
1959 | 97.6
94.7
92.0
87.4
84.5 | 5.3
11.3
16.3
27.3
38.3 | | 64
65
66
67
68 | | 199
200
201
210
198 | .800
.799
.799
.800
.799 | 105.1
105.1
105.3
106.9
104.8 | 9.78
16.28
23.55
30.59
36.39 | .00540
.00566
.00819
.01062
.01265 | 851
1208
1545
1812
2040 | 652
1008
1344
1602
1842 | 94.5
91.5
87.9
83.7
85.4 | 5.3
12.3
21.3
30.3
36.3 | | 69
70
71
72
73 | | 46
41
38
44
43 | .999
.999
.998
.998 | 100.9
99.9
99.2
100.4
100.5 | 9.91
17.28
26.75
35.27
47.50 | .00276
.00481
.00745
.00982
.01318 | 600
955
1345
1646
2010 | 554
914
1307
1602
1967 | 96.4
95.1
91.8
88.8
85.3 | 4.8
14.5
25.3
34.3
49.3 | | 74
75
76
77 | ! | 40
40
40
41 | .997
.995
.992
.992 | 99.5
99.3
99.0
99.2 | 1.84
5.20
9.82
14.65 | .00051
.00145
.00275
.00410 | 147
340
586
814 | 107
300
546
773 | 95.5
97.5
95.6
95.2 | .9
4.8
10.3 | | 78
79
80
81
82 | | 205
210
207
208
196 | .994
.993
.998
.999 | 132.5
133.3
133.4
133.7
131.3 | 9.84
15.58
23.28
32.01
44.28 | .00275
.00436
.00648
.00890
.01231 | 760
1016
1340
1646
2025 | 555
806
1133
1438
1829 | 98.2
93.0
90.9
87.5
84.8 | 5.3
12.3
21.3
31.3
45.3 | | 83
84
85
86 | | 198
202
194
202 | 1.000
.999
1.000
.998 | 131.9
132.5
131.1
132.4 | 1.85
4.92
9.82
16.93 | .00051
.00157
.00275
.00471 | 300
467
732
1045 | 102
265
538
843 | 92.5
93.3
95.4
90.3 | 5.3
13.3 | | 87
88
89
90
91
92
93
94 | | 37
42
38
43
38
40
40
40 | 1.298
1.298
1.298
1.298
1.301
1.300
1.300
1.299 | 129.5
150.8
129.8
151.1
130.4
130.8
130.8 | 10.17
19.96
30.19
46.62
1.68
4.93
8.09
15.23 | .00218
.00427
.00646
.00598
.00036
.00105
.00175 | 481
870
1205
1865
115
250
405
680 | 444
828
1167
1622
77
210
365
640 | 97.4
96.0
93.2
88.7
96.8
92.4
100.3 | 5.3
17.3
29.5
48.3
 | | 95
96
97
98 | | 204
198
180
195 | 1.302
1.303
1.307
1.315 | 175.2
173.6
169.4
174.5 | 9.83
14.92
22.46
28.48 | .00210
.00318
.00477
.00602 | 620
805
1060
1255 | 416
607
880
1060 | 94.5
93.5
93.1
91.0 | 5.3
11.3
20.3
27.3 | | 99
100
101
102
103 | | 205
199
194
194
198 | 1.306
1.308
1.300
1.296
1.295 | 176.0
174.6
171.6
171.6
172.5 | 54.23
35.12
5.05
2.07
16.01 | .00728
.00746
.00108
.00044
.00343 | 1440
1465
411
285
847 | 1235
1266
217
91
649 | 89.6
89.8
94.4
96.5
92.9 | 34.3
35.3
.4
.11.3 | | 104
105
106
107
108 | 8.0 | 45
42
40
40
49 | 0.562
.561
.561
.562
.560 | 101.3
100.6
100.3
100.3 | 10.89
15.50
19.79
24.56
27.88 | 0.00538
.00767
.00980
.01214
.01383 | 1005
1327
1597
1852
2070 | 960
1265
1557
1812
2021 | 90.1
87.6
86.3
83.9
84.4 | 8.9
14.4
20.4
26.4
29.4 | | 109
110
111
112
113 | | 42
40
40
40
40 | .567
.566
.565
.564
.563 | 101.6
101.1
100.9
100.7
100.6 | 1.70
5.00
8.80
14.78
2.66 | .00083
.00245
.00433
.00728
.00131 | 212
507
845
1221
290 | 170
467
805
1181
249 | 93.7
91.1
92.4
84.2
89.5 | 1.0
6.9
13.4 | | 114
115
116
117
118 | | 37
38
38
37
37 | .564
.560
.560
.561
.558 | 99.99
99.49
99.49
99.46
99.32 | 5.18
9.67
17.43
13.22
7.46 | .00255
.00480
.00864
.00654
.00371 | 524
931
1402
1149
744 | 487
893
1364
1102
705 | 91.7
93.0
84.3
87.3
93.0 | 2.0
7.9
15.9
11.4
4.7 | 5614 TABLE I. - Continued. HYDROGEN PERFORMANCE DATA (b) Injector B - concluded | Run | Combustor-
inlet
total
pressure,
in. Hg abs | Combustor-
inlet
tempera-
ture, | Air-flow
rate,
lb/sec | Refer-
ence
velco-
ity,
ft/sec | Fuel-
flow
rate,
lb/hr | Fuel-air
ratio | Mean
combustor-
outlet
temper-
ature,
op | Mean tem-
perature
rise
through
combustor, | Combustion
efficiency,
percent | Fuel
injector
pressure
drop,
lb/sq in.
gage | |---|---|--|--|---|--|---|---|--|---|--| | 119
120
121
122
123
124
125 | 8.0 | 188
198
197
198
200
211 | 0.563
.562
.566
.562
.561 | 130.7
132.5
133.5
133.5
132.9
134.9 | 12.26
16.55
22.20
25.44
1.12
3.22
5.03 | 0.00605
.00818
.01088
.01248
.00055
.00160 | 1238
1525
1822
2033
312
499
668 | 1050
1327
1625
1835
112
288
468 | 89.5
86.3
83.2
84.0
94.0
85.4
90.7 | 11.4
16.4
25.4
27.4
 | | 126
127
128
129
130
131 | | 210
198
200
194
199
200 | .560
.560
.559
.560
.560 | 134.5
132.1
132.1
131.1
132.1
132.6 | 8.89
14.53
2.23
7.12
13.52
16.79 | 00441
.00721
.00111
.00353
.00670
.00831 | 990
1344
405
835
1282
1519 | 780
1146
205
641
1083
1319 | 88.6
83.2
87.4
89.2
83.9
84.7 | 6.9
12.4

4.5
11.9
15.9 | | 132
133
134
135
136
137
138 | | 46
42
44
58
59
42
40 | .730
.730
.729
.728
.729
.730 | 133.0
131.9
132.3
130.4
130.9
131.8
131.3 | 11.24
16.21
21.75
1.79
5.28
9.38
14.59 | .00428
.00617
.00829
.00068
.00201
.00357 | 866
1151
1438
185
440
733
1014 | 820
1109
1394
147
401
691
974 | 95.0
92.1
89.2
100.6
94.7
94.8
88.7 | 9.4
15.4
22.4
2.5
7.4
13.4 | | 139
140
141
142
143
144 | | 200
190
211
198
202
204 | .735
.735
.736
.738
.734
.733 | 175.8
173.0
179.0
175.8
176.1
176.4 | 12.30
16.36
3.02
4.91
9.12
14.72 | .00465
.00618
.00114
.00185
.00345 | 1068
1275
422
551
826
1125 | 868
1085
211
353
624
921 | 94.2
90.7
88.1
91.2
89.2
84.0 | 11.4
16.4
.1
2.0
6.9
13.4 | | 145
146
147
148
149 | 6.2 | 44
48
-47
39
38 | 0.501
.502
.501
.498
.494 | 116.7
117.9
117.4
114.9
113.7 | 1.56
6.74
17.21
3.00
9.45 | 0.00086
.00373
.00954
.00167
.00531 | 221
709
1525
361
970 | 177
661
1478
322
932 | 94.8
86.2
83.6
85.1
88.1 | 4.8
17.5
.9
8.3 | | 150
151
152
153 | | 203
202
198
198 | .500
.501
.502
.501_ | 154.0
154.0
153.4
153.1 | 1.76
5.24
11.58
18.01 | .00098
.00290
.00641
.00998 | 377
708
1240
1649 | 174
506
1042
1451 | 84.7
84.4
83.8
79.4 | 2.9
10.7
17.3 | |
154
155
156
157
158 | 3.3 | 56 -
57
58
50
50 | 0.146
.146
.145
.149
.149 | 64.8
64.9
64.6
65.3
65.3 | 1.50
3.35
6.04
2.01
3.68 | 0.00285
.00637
.01157
.00375
.00687 | 556
985
1537
633
1035 | 500
928
1479
583
985 | 83.5
73.9
70.0
75.1
73.3 | 0.4
1.9
5.3
.9
2.4 | | 159
160
161
162
163 | | 50
45
44
43
40 | .149
.150
.150
.151
.152 | 65.3
65.1
65.0
65.3
65.4 | 5.81
1.80
3.62
6.39
9.38 | .01084
.00534
.00671
.01175
.01714 | 1457
595
1009
1540
2030 | 1407
550
965
1497
1990 | 70.3
79.1
73.2
70.0
68.5 | 4.8
.9
2.8
5.8
9.2 | | 164
165
166
167
168
169
170 | | 209
21.4
198
200
201
200
200 | .148
.145
.149
.145
.149
.150 | 85.1
84.0
84.3
82.3
84.7
85.1 | 1.93
4.54
1.83
3.73
5.64
8.31
4.61 | .00362
.00870
.00340
.00714
.01053
.01539 | 735
1325
726
1179
1530
1981
1358 | 526
1101
528
979
1329
1781
1158 | 70.8
67.5
75.3
71.0
68.7
67.4
71.3 | 9
3.9
2.4
4.8
8.2
5.8 | | 171
172
173
174
175
176 | | 202
199
196
203
201
200 | .149
.149
.150
.150
.154 | 84.8
84.4
84.6
85.5
87.5 | 1.95
1.12
1.88
3.07
6.10
3.0 | .00364
.00209
.00349
.00568
.01101
.00541 | 795
571
745
1024
1550
1003 | 593
372
549
821
1349
803 | 79.5
84.7
76.2
73.0
67.0
75.1 | .4
1.4
1.9
5.8
2.1 | TABLE I. - Continued. HYDROGEN PERFORMANCE DATA (e) Injector C | Run | Combustor- | Combustor- | Air-flow | | Fuel- | Fuel-air | | Mean tem- | Combustion | Fuel | |---------------------------------|---|---------------------------------|---|---|---|---|---|---|---------------------------------------|--| | | inlet
total
pressure,
in. Hg abs | inlet
tempera-
ture
op | rate,
lb/sec | ence
veloc-
ity,
ft/sec | flow
rate,
lb/hr | ratio | combustor-
outlet
temper-
sture, | perature
rise
through
combustor,
op | efficiency,
percent | injector
pressure
drop,
lb/sq in.
gage | | 177
178
179
180
181 | 14.3 | 40
40
42
48
42 | 0.802
.796
.794
.799 | 79.8
79.1
79.3
80.7
79.8 | 11.30
16.55
24.26
32.83
37.60 | 0.00391
.00577
.00849
.01142
.01307 | 785
1111
1515
1875
2055 | 745
1071
1473
1827
2013 | 93.7
94.6
92.7
89.5
88.3 | 2.4
5.3
10.3
16.3
20.3 | | 182
183
184
185 | | 197
205
206
197 | .796
.796
.795
.797 | 104.3
105.5
105.6
104.4 | 11.05
17.64
25.98
36.28 | .00386
.00615
.00908
.01265 | 908
1265
1615
2025 | 711
1060
1409
1828 | 91.2
89.1
84.1
82.7 | 1.9
6.3
12.3
19.3 | | 186
187
188
189 | | 45
40
40
38 | 1.002
1.000
1.000
1.002 | 101.0
99.8
100.0
99.6 | 12.79
19.20
26.16
34.75 | .00355
.00533
.00727
.00963 | 770
1045
1355
1660 | 725
1005
1315
1622 | 99.9
95.4
94.7
91.6 | 2.8
6.8
12.3
17.3 | | 190
191
192
193
194 | | 42
40
40
41
42 | .993
.994
.994
.996
1.000 | 99.5
99.2
99.2
100.2
100.2 | 45.12
1.11
5.43
11.43
18.55 | .01262
.00031
.00152
.00319
.00515 | 2025
106
350
680
998 | 1983
66
310
636
956 | 89.7
96.9
96.8
97.0
93.6 | 25.3

2.4
5.8 | | 195
196
197
198
199 | | 203
193
202
195
197 | .999
1.000
.999
.999
1.000 | 132.7
130.9
132.5
131.1
131.7 | 11.03
18.53
27.97
36.35
43.72 | .00307
.00515
.00778
.01011
.01214 | 800
1124
1493
1780
2020 | 597
931
1291
1585
1823 | 94.9
91.8
88.2
86.6
85.5 | 2.4
6.8
13.3
19.3
24.3 | | 200
201
202
203
204 | | 199
195
198
194
194 | 1.000
.999
.999
.998 | 132.1
131.1
131.1
130.8
130.9 | 2.58
4.91
7.66
15.97
17.63 | .00072
.00137
.00213
.00440 | 345
465
618
988
1040 | 146
270
420
794
846 | 95.4
92.8
93.8
90.4
87.0 | 4.3 | | 205
206
207
208
209 | | 43
42
37
44
43 | 1.291
1.290
1.307
1.290
1.298 | 130.7
130.3
130.7
130.8
131.1 | 12.71
21.60
30.73
40.79
46.71 | .00273
.00465
.00653
.00878 | 612
943
1244
1565
1730 | 569
901
1207
1521
1687 | 100.1
96.7
95.6
93.2
92.5 | 2.8
8.3
14.3
22.3
26.3 | | 210
211
212
213 | | 40
41
41
40 | 1.300
1.306
1.306
1.305 | 150.8
151.7
151.7
151.3 | 2.02
5.25
9.92
17.93 | .00043
.00112
.00211
.00382 | 130
275
478
743 | 90
234
437
703 | 101.4
97.8
99.0
90.1 | 1.4 | | 214
215
216
217 | | 215
206
198
202 | 1.295
1.295
1.295
1.295 | 177.0
174.7
172.6
173.6 | 11.39
20.81
29.64
37.44 | .00244
.00446
.00636
.00803 | 692
1016
1285
1517 | 477
810
1087
1315 | 94.5
91.3
88.4
87.3 | 1.9
8.3
14.3
20.3 | | 218
219
220
221
222 | | 196
196
196
196
194 | 1.300
1.297
1.300
1.299
1.309 | 172.6
172.2
172.6
172.5
173.4 | 2.49
5.00
7.43
10.77
15.32 | .00053
.00107
.00159
.00230
.00325 | 304
400
512
650
795 | 108
204
316
454
601 | 97.4
89.5
94.0
94.7
89.8 | 1.4 | # TABLE I. - Concluded. HYDROGEN PERFORMANCE DATA # (d) Injector D | Run | Combustor-
inlet
total
pressure,
in. Hg abs | Combustor-
inlet
tempera-
ture
or | Air-flow
rate,
lb/sec | Reference
veloc-
ity,
ft/sec | Fuel-
flow
rate,
lb/hr | Fuel-air
ratio | | Mean tem-
perature
rise
through
combustor, | Combustion
efficiency,
percent | Fuel
injector
pressure
drop,
lb/sq in.
gage | |--|---|--|--|--|--|--|--|--|--|--| | 223
224
225
226 | 14.3 | 202
202
198
198 | 1.300
1.304
1.306
1.305 | 174.2
174.8
174.0
173.8 | 1.86
4.95
8.96
16.55 | 0.00040
.00105
.00191
.00352 | 273
402
570
830 | 71
200
372
639 | 81.6
93.7
92.5
88.4 | 0.4
4.3
13.31 | | 227
228
229
230
231 | 6.2 | 42
40
38
37
38 | 0.491
.491
.491
.490
.496 | 114.0
113.5
113.2
112.6
114.0 | 1.31
4.88
8.82
16.85
2.03 | 0.00074
.00276
.00499
.00955
.00114 | 200
575
961
1565
260 | 158
535
923
1528
222 | 100.0
93.2
92.9
86.8
91.8 | 2.4
7.3
16.3 | | 232
233
234
235 | | 38
38
40
42 | .501
.501
.504
.502 | 115.3
115.3
116.3
116.5 | 1.83
5.01
8.82
12.56 | .00102
.00277
.00486
.00695 | 250
545
908
1218 | 192
507
868
1176 | 88.0
87.4
89.4
87.0 | .2
2.6
7.5
11.0 | | 236
237
238
239 | | 208
194
203
203 | .497
.496
.491
.491 | 154.2
150.7
151.2
151.2 | 1.44
4.18
8.33
15.79 | .00081
.00234
.00471
.00895 | 360
625
1048
1620 | 152
431
845
1417 | 90.1
88.0
90.4
86.0 | 1.9
7.3
15.3 | | 240
241
242
243
244
245
246 | 3.3 | 50
60
58
57
48
48 | 0.147
.142
.145
.146
.151
.151 | 65.7
63.5
64.6
64.9
66.0
65.8 | 1.24
2.93
4.99
8.38
2.61
4.52
6.10 | 0.00235
.00573
.00956
.01593
.00481
.00831 | 492
928
1425
1993
852
1310
1650 | 432
868
1367
1936
804
1262
1603 | 87.4
76.1
76.8
71.4
83.2
79.8
78.7 | 1.4
5.8
8.7
1.4
5.3
5.3 | | 247
248
249
250
251
252
253
254 | | 157
158
169
176
199
200
202
202 | .148
.145
.145
.144
.148
.148
.148 | 77.4
76.8
78.4
78.7
83.9
84.0
84.3
84.3 | 7.89
5.49
3.35
1.43
1.71
3.33
4.97
8.06 | .01499
.01051
.00643
.00275
.00322
.00625
.00935 | 2015
1595
1160
580
690
1125
1468
2010 | 1858
1439
991
484
491
925
1266
1808 | 72.2
74.8
79.3
84.5
73.7
75.6
72.8 | 7.7
4.3
2.1
.4
1.1
2.1
4.1
8.0 | # (e) Injector E | 255
256
257
258 | 14.3 | 197
197
192
198 | 1.506
1.505
1.305
1.310 | 173.6
173.6
172.3
174.0 | 2.14
5.47
9.78
16.40 | 0.00046
.00116
.00208
.00348 | 269
420
605
835 | 72
223
413
639 |
73.0
91.0
95.2
90.5 | 1.4
6.3
14.5 | |--------------------------|------|--------------------------|----------------------------------|----------------------------------|-------------------------------|---------------------------------------|-----------------------------|----------------------------|------------------------------|---------------------------| | 259
260
261
262 | 6.2 | 31
37
40
41 | 0.499
.502
.502
.500 | 113.3
115.3
116.0
115.8 | 1.36
4.56
9.73
17.78 | 0.00076
.00252
.00538
.00988 | 180
510
1000
1585 | 149
473
960
1544 | 93.3
89.9
90.4
84.8 | 2.9
9.2
18.3 | | 263
264
265
266 | 3.5 | 46
46
45
46 | 0.147
.147
.146
.148 | 63.9
63.9
63.4
64.4 | 1.38
3.42
5.76
8.70 | 0.00261
.00647
.01095
.01652 | 562
1011
1485
2000 | 516
965
1440
1954 | 94.4
76.1
71.6
70.2 | 0.4
2.4
5.8
10.2 | | 267
268
269
270 | | 185
188
191
191 | .150
.150
.151
.146 | 83.2
83.5
84.5
81.7 | 1.24
3.23
6.02
8.34 | .00230
.00598
.01107
.01586 | 520
1022
1598
2008 | 435
834
1407
1817 | 90.1
70.8
69.6
67.1 | 2.8
6.3
9.7 | TABLE II. - PROPANE PERFORMANCE DATA (a) Injector A | | | | | | ·-, | lector w | | | | | |---------------------------------|---|--|--|--|---|---|---|--|--------------------------------------|--| | Run | Combustor-
inlet
total
pressure,
in. Hg abs | Combustor-
inlet
tempera-
ture, | Air-flow
rate,
lb/sec | Refer-
ence
veloc-
ity,
ft/sec | Fuel-
flow
rate,
lb/hr | Fuel-sir
ratio | Mean
combustor-
outlet
temper-
ature,
op | Mean tem-
perature
rise
through
combustor, | Combustion efficiency, percent | Fuel
injector
pressure
drop,
lb/sq in.
gage | | 271
272
273
274
275 | 14.3 | 36
37
42
41
196 | 0.802
.802
.800
.800 | 79.2
79.3
79.9 | 18.62
32.83
41.37
45.28
24.08 | 0.00645
.01137
.01436
.01572
.00835 | 500
895
1030
² 1050
840 | 464
858
988
1009
644 | 89.0
96.5
89.5
83.8
98.7 | 6.8
18.3
23.3
24.3
12.3 | | 276
277
278
279
280 | | 196
200
195
194
200 | .801
.805
.989
.993 | 104.8
105.9
129.7
130.1
131.3 | 37.85
50.45
20.11
27.68
33.65 | .01312
.01741
.00565
.00774 | 1120
1250
605
735
875 | 924
1050
410
541
675 | 92.9
81.2
90.9
88.7
92.3 | 21.3
29.8
8.7
14.3
18.8 | | 281
282
283
284
285 | | 203
190
200
200
197 | .994
1.293
1.303
1.297
1.293 | 132.0
170.1
174.2
173.4
172.0 | 59.92
18.09
34.03
46.31
53.26 | .01675
.00389
.00725
.00992 | 1125
420
660
770
745 | 922
230
460
570
548 | 73.5
73.1
80.1
73.6
61.6 | 35.3
7.3
19.3
27.2
32.1 | | 286
287
288
289 | | 198
201
201
200 | 1.298
1.298
1.300
1.305 | 173.0
173.8
173.9
174.3 | 63.94
21.02
34.70
51.03 | .01368
.00450
.00742
.01086 | 740
460
660
800 | 542
259
459
600 | 51.2
71.5
78.3
71.1 | 39.1
9.8
19.3
29.0 | | 290
291
292
293 | 8.0 | 205
199
204
203 | 0.555
.558
.561
.552 | 132.3
131.8
133.5 | 13.90
19.39
25.61
29.07 | 0.00696
.00965
.01268
.01463 | 645
820
825
8790 | 440
621
621
587 | 79.8
82.6
63.5
52.2 | 6.4
12.3
15.9
18.4 | | | | | | | (b) Inj | ector B | | | | | | 294
295
296
297
298 | 14.5 | 40
43
43
39
195 | 0.800
.805
.803
.799
.793 | 80.52
80.32
103.5 | 16.23
22.35
29.50
46.38
17.31 | 0.00564
.00771
.01020
.01613
.00606 | 380
555
700
⁸ 995
615 | 340
512
657
956
420 | 74.0
82.6
81.2
77.2
87.0 | 0.4
1.1
2.4
5.8 | | 299
300
301
302
303 | | 200
192
201
196
211 | .797
.798
.798
.797
1.007 | 104.8
103.7
105.1

135.3 | 22.42
30.52
37.06
53.59
18.27 | .00781
.01062
.01290
.01868
.00504 | 755
935
1075
21280
535 | 555
743
874
1084
324 | 90.4
90.6
89.1
78.5
80.3 | 1.4
2.8
4.5
6.3 | | 304
305
306
307
308 | | 208
210
194
205
208 | 1.002
.998
.998
1.309
1.298 | 133.9
135.9

176.2
175.7 | 34.42
47.23
61.87
18.39
37.02 | .00954
.01315
.01722
.00390
.00792 | 790
965
81025
410
595 | 582
755
831
205
387 | 78.2
75.2
64.0
65.1
61.8 | 3.8
7.0
10.8
 | | 309
310
311 | | 164
210
219 | 1.298
1.303
1.302 | 164.0
176.7 | 57.82
57.39
65.66 | .01237
.01223
.01401 | - 670
695
8695 | 506
485
476 | 52.3
51.1
44.0 | 9.3
9.3
12.3 | | 312
513
314
315 | 8.0 | 204
203
200
200 | 0.560
.553
.551
.552 | 133.1 | 16.92
19.80
27.65 | 0.00839
.00994
.01392 | 635
700
8.750
775 | 431
497
550
575 | 65.1
63.9

53.6 | 1.5
2.7

4.5 | | 316
317
318
319 | | 200
198
195
193 | .748
.748
.748
.749 | 179.1
178.4
177.7 | 15.91
20.35
24.70
27.93 | .00591
.00756
.00917
.01036 | 415
450
460
a460 | 215
252
265
267 | 45.4
41.8
36.5
32.6 | 1.0
2.0
3.5
4.5 | aBlow-out. Figure 1. - Single-combustor installation and suriliary equipment. Instrumentation planes, A-A, B-B, C-C, and D-D. Figure 2. - Cross section of single-combustor installation showing auxiliary ducting and location of temperature- and pressure-measuring instruments in instrumentation planes. Figure 3. - Construction details of temperature- and pressure-measuring instruments. Figure 4. - Schematic diagram of gaseous fuel system. Injector configurations A, B, and C Injector configuration D | Injector configuration | Number
of holes | Hole diameter,
in. | Total open
hole area,
sq in. | |------------------------|--------------------|-----------------------|------------------------------------| | | 1 | 0.0160 | 0.0100 | | A | 6 | 0.06250 | 0.0187 | | | 1 | 0.0160 | 0.0437 | | В | 6 | 0.0938 | 0.0417 | | | 1 | 0.0160 | 0.0555 | | С | 6 | 0.125 | 0.0737 | | D | 1 | 0.238 | 0.0445 | (a) Injector configurations A, B, C, and D. | Station | Number
of holes | Hole
diameter,
in. | Station
hole area,
sq in. | Total open hole area, sq in. | |---------|--------------------|--------------------------|---------------------------------|------------------------------| | ı | 3 | 0.0520 | 0.00636 | | |] 2 | 4 | .0350 | .00385 |] | | 3 | 3 | .0520 | .00636 | | | 4 | 3 | .0520 | .00636 | 0.0490 | | 5 | 2 | .0200 | .00062 | 1 | | 6 | 3 | -0520 | .00636 | | | 7 | 9 | .0520 | .01908 | | (b) Injector configuration E. Figure 5. - Fuel injectors. Figure 6. - Relation between fuel-flow rate and $P_f \Delta P$ (where P_f is fuel pressure and ΔP is injector pressure differential) for gaseous-fuel injectors. Figure 7. - Enthalpies of hydrogen-air mixtures and products of combustion. (b) Products of combustion of hydrogen and air. Figure 7. - Concluded. Enthalpies of hydrogen-air wixtures and products of combustion. Combustion efficiency, percent (a) Combustor-inlet total pressure, 14.3 inches of mercury absolute; air-flow rate, 0.8 pound per second; inlet-air temperature, 200° F; reference velocity, 105 feet per second. (b) Combustor-inlet total pressure, 14.3 inches of mercury absolute; air-flow rate, 0.8 pound per second; inlet-air temperature, 40° F; reference velocity, 80 feet per second. Figure 8. - Variation of combustion efficiency with temperature rise for hydrogen fuel in single tubular combustor. (d) Combustor-inlet total pressure, 14.3 inches of mercury absolute; airflow rate, 1.0 pound per second; inlet-air temperature, 40° F; reference velocity, 100 feet per second. Figure 8. - Continued. Variation of combustion efficiency with temperature rise for hydrogen fuel in single tubular combustor. absolute; air-flow rate, 1.3 pounds per second; inlet-air temperature, 200° F; reference velocity, 173 feet per second. (f) Combustor-inlet total pressure, 14.3 inches of mercury absolute; air-flow rate, 1.3 pounds per second; inletair temperature, 40° F; reference velocity, 131 feet per second. Figure 8. - Continued. Variation of combustion efficiency with temperature rise for hydrogen fuel in single tubular combustor. (h) Combustor-inlet total pressure, 8.0 inches of mercury absolute; air-flow rate, 0.56 pound per second; inlet-air temperature, 40° F; reference velocity, 100 feet per second. Combustor temperature rise, OF Figure 8. - Continued. Variation of combustion efficiency with temperature rise for hydrogen fuel in single tubular combustor. (j) Combustor-inlet total pressure, 8.0 inches of mercury absolute; air-flow rate, 0.73 pound per second; inlet-air temperature, 40° F; reference velocity, 132 feet per second. Figure 8. - Continued. Variation of combustion efficiency with temperature rise for hydrogen fuel in single tubular combustor. Combustion efficiency, percent (k) Combustor-inlet total pressure, 6.2 inches of mercury absolute; air-flow rate, 0.50 pound per second; inlet-air temperature, 200° F;
reference velocity, 153 feet per second. (1) Combustor-inlet total pressure, 6.2 inches of mercury absolute; air-flow rate, 0.50 pound per second; inlet-air temperature, 40° F; reference velocity, 115 feet per second. Figure 8. - Continued. Variation of combustion efficiency with temperature rise for hydrogen fuel in single tubular combustor. NACA RM E54L3Oa (n) Combustor-inlet total pressure, 3.3 inches of mercury absolute; air-flow rate, 0.15 pound per second; inlet-air temperature, 40° F; reference velocity, 65 feet per second. Figure 8. - Concluded. Variation of combustion efficiency with temperature rise for hydrogen fuel in single tubular combustor. NACA RM E541.30a 33 (a) Combustor-inlet total pressure, 14.3 inches of mercury absolute; inlet-air temperature, 200° F. Figure 9. - Variation of combustion efficiency with temperature rise for propane fuel in single tubular combustor and comparison with that for hydrogen fuel. (b) Combustor-inlet total pressure, 14.3 inches of mercury absolute; inlet-air temperature, 40° F. Figure 9. - Continued. Variation of combustion efficiency with temperature rise for propane fuel in single tubular combustor and comparison with that for hydrogen fuel. 35 (c) Combustor-inlet total pressure, 8.0 inches of mercury absolute; inlet-air temperature, 200° F. Figure 9. - Concluded. Variation of combustion efficiency with temperature rise for propane fuel in single tubular combustor and comparison with that for hydrogen fuel. Figure 10. - Correlation of combustion efficiency with combustion parameter V_r/p_1T_1 . 14 - Figure 10. - Concluded. Correlation of combustion efficiency with combustion parameter $V_{\mathbf{r}}/p_{1}T_{1}$.